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Abstract: - The ability to distinguish between chaotic from regular dynamics is not a trivial task and the fact 

that noise cannot be avoided in real physical systems makes the problem even more challenging. Chaos 

becomes highly unpredictable after a very short period of time as a random-like motion that traditional 

detection techniques may fail, especially when measurement noises are taken into consideration. The present 

paper proposes a new algorithm to detect chaotic modes automatically (without any model), in real-time and in 

the presence of noise. The key idea behind the detection lies in the fact that a single component of a chaotic 

trajectory tends to exhibit an infinite number of local maxima at different time-instants. Using an auxiliary 

system acting as a denoiser and resorting to simple mathematical operations, it is established a parameter that 

characterizes the type of motion based on a specified threshold. Numerical simulations are presented to validate 

the effectiveness and robustness using three applications: a butterfly-shaped system identical to the celebrated 

Lorenz system; and two aerospace systems related to the attitude motion of spacecraft. The results show that 

the distinction is very clear and the detector is effective even for relatively low Signal-to-Noise Ratios. The 

proposed detector is easily-implementable and very efficient from the computational viewpoint as opposed to 

other tools of chaos detection. 
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1 Introduction 

Chaotic systems have attracted significant attention 

from researchers over the last two decades and there 

has been since then a large effort in attempting to 

develop and improve techniques of chaos detection, 

[1]–[8]. Chaos, as well-known, may be desirable or 

not depending on the purpose of the application. In 

applications such as combustion, it is desired 

because it provides a better fuel-air mixture that 

leads consequently to a better performance. Random 

number generators and sources of chaotic signals 

used as carrier frequencies in telecommunication 

systems are, on the other hand, the most classic 

examples. Another interesting example where it 

may be useful occurs in spacecraft manoeuvres. The 

‘main’ characteristic of chaos - high sensitivity to 

initial conditions - may be used in a clever way to 

perform orbital manoeuvres at a very low cost given 

that small initial deviations lead to completely 

different trajectories. A proof of that was the 

manoeuvre achieved with the satellite ISEE-3/ICE 

(International Sun-Earth Explorer / International 

Cometary Explorer), where once ended its first 

mission, engineers resorted carefully to that 

sensitivity to transfer the satellite to another orbit  

 

with a minimum expenditure of fuel, continuing 

there posteriorly its second mission, [9]–[11]. 

Contrariwise, in aerodynamics, chaos (turbulence) is 

no longer desired because it increases drastically the 

drag of an aircraft, leading naturally to higher 

operational costs. In a communication satellite, a 

chaotic attitude motion is also not desired since the 

antenna must be pointed toward a specific target. 

Mechanical and structural systems are, on the other 

hand, typical examples where chaos should be 

avoided because chaotic vibrations can lead to a 

fatigue failure. However, desirable or not, 

uncertainties are surely not desired in engineering 

problems, and in that sense the detection theory 

plays an important role. A dynamical system may be 

designed, through the appropriate choice of its 

parameters, to not exhibit a chaotic behaviour. 

Nevertheless, there is no guarantee that chaos will 

not occur, because any nonlinear system may come 

to exhibit chaotic motions if the system is subject to 

disturbances with specific characteristics, even if it 

has been designed to exhibit a regular motion, [12], 

[13]. Be able to detect unexpected transitions from 

regular- to chaotic- behaviours is for this reason 
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extremely crucial because only then control actions 

can be properly applied. Several are the techniques 

that can be found in the literature for the control and 

synchronization of chaotic systems, [12], [14]–[22]. 

The purpose of the present paper is to propose an 

algorithm for automatic and real-time chaos 

detection from time series corrupted with noise with 

relatively low Signal-to-Noise Ratios (SNR). The 

work is motivated by the fact that most of the 

existing tools are based on the model of the system 

or in noiseless time series, and, on the other hand, 

also because many of such techniques are only 

useful if applied offline. Few are the techniques 

available to detect automatically the presence of 

chaos, and in that sense it is extremely necessary to 

find effective solutions even in the presence of 

disturbances, once there are highly demanding 

applications, such as aerospace and aeronautical 

systems (e.g.: satellites, aircraft wings, helicopter 

rotors, etc.), that may exhibit undesirable chaotic 

motions that if are not detected and supressed 

‘immediately’ can lead to catastrophic scenarios. 

The rest of the paper is organized as follows: 

section 2 presents a review of the existing tools for 

analysis and detection of chaotic vibrations in 

deterministic systems with special emphasis on their 

weaknesses; section 3 specifies the problem to be 

solved; in section 4, a solution to the problem, 

which is a new method based in one of the main 

characteristics of chaos, is proposed; in section 5, 

numerical simulations are performed to validate the 

effectiveness and robustness of the detector; section 

6 presents a discussion about the results; and section 

7 completes lastly the paper with concluding 

remarks and suggestions for future extensions of the 

method. 

 

 

2 Background 

Chaos is typically referred as a complex, irregular, 

and unpredictable random-like motion, which is 

highly sensitive to initial conditions and that results 

from the superposition of an infinite number of 

unstable periodic motions produced by deterministic 

nonlinear system, [23], [24]. In a chaotic system, 

despite being governed by well-defined dynamical 

laws, and most of the times even with a relatively 

simple structure, two trajectories initiated very close 

to each other become completely different after a 

very short period of time. The phenomenon has 

been intensely called of butterfly effect, portraying 

the fact that a small disturbance induced by a 

butterfly flapping its wings in a particular place of 

the planet might ultimately cause a hurricane a few 

days later in another part of the planet, [25]. Chaotic 

systems are also extremely sensitive to parameter 

changes. A given system may be operating in a well 

regular regime and at the tiniest variation in one of 

its parameters come to exhibit a chaotic behaviour, 

and hence a completely different regime than 

desired. Another characteristic of the chaotic motion 

is that it presents in its phase-space a geometric 

object of fractal structure designated by strange 

attractor. In a strange attractor, the trajectories are 

confined to a bounded region, never repeat the same 

path twice, are recurrent, and all trajectories in its 

vicinity are attracted by it. The recurrence property 

means that, given enough time, the trajectory returns 

sooner or later arbitrarily close to any point of the 

phase-space. As previously mentioned, chaos is an 

unpredictable type of motion, but it should be noted 

that it is unpredictable only after a specific time 

(very short) from the beginning. This is one of the 

characteristics that distinguish it from a true 

stochastic process, since a stochastic process is 

unpredictable at any time. On the other hand, 

although the trajectories do not follow any type of 

pattern, the chaotic behaviour is governed entirely, 

or at least in part, by deterministic dynamical 

equations, as opposed to purely stochastic processes 

which can only be described by statistical 

properties. Another interesting characteristic of 

chaos is extracted in the frequency domain. A 

chaotic signal is characterized by having a 

continuous frequency spectrum, broadband, but 

bounded, and such characteristic is what 

differentiates it from periodic-, quasi-periodic- and 

stochastic- signals. Note that, if on one hand the 

existence of many frequencies distinguishes it from 

periodic signals, a bounded spectrum distinguishes 

it from stochastic signals, since the latter are 

characterized by having distributed frequencies over 

the entire spectrum. As stated also before, the 

chaotic behaviour may arise only in nonlinear 

systems. Theoretically, it is impossible that a (finite-

dimensional) linear system comes to exhibit chaotic 

vibrations, since a linear system is one in which if a 

change in a particular variable at some initial time 

produces a change in the same or in another variable 

at some posterior time, a change 𝑛 times larger at 

the same initial time produces a change 𝑛 times 

larger at the same posterior time. Chaos is induced 

by nature due to the nonlinearities, because only 

then the change observed at a specific time is not 

proportional to the change at the initial time. 

Mathematically, the chaotic motion is characterized 

by local instability, globally limited trajectories, and 

by a random-like motion as already stated. 

However, it is well-known that there is no 
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universally accepted definition and because of that 

chaos is defined as having the following set of 

characteristics, instead of a general definition: 1) 

deterministic; 2) nonlinear; 3) high sensitivity to 

initial conditions; 4) high sensitivity to parameter 

changes; 5) bounded phase-space; 6) associated to a 

fractal structure/strange attractor; 7) unpredictability 

of the trajectories beyond a very short period of 

time; 8) recurrence/ergodicity; and 9) a continuous 

frequency spectrum, broadband, and bounded. 

 

 

2.1  Techniques of Chaos Analysis and 

Detection 

Usually, the first clue that a certain system exhibits 

a chaotic behaviour is given through observation 

over the time of the system outputs (time histories), 

and through representation of its coordinates in one 

or more plots, that is, analysing the system phase-

space and/or phase-planes. Contrary to what 

happens when the system exhibits a regular 

behaviour, where it is evident an equilibrium point, 

a periodic- or a quasi-periodic- orbit, the observed 

motion does not reveal any periodicity or repeating 

patterns, and in some cases the trajectory toggles 

between equilibrium states oscillating momentarily 

around each of these states. A chaotic motion is thus 

associated to a fractal structure, and it exists when 

the phase-space shows a strange attractor. However, 

both the time history as the phase-space analysis are 

merely indicative. A visual inspection is not 

sufficient to characterize the system dynamics. The 

motion may own more than one main period, as is 

the case of a chaotic motion, and in this condition 

distinguish a quasi-periodic motion of many periods 

from a chaotic motion is not so easy, if not even 

impossible. Furthermore, the fact that the phase-

space exhibits a strange attractor may not imply 

necessarily the presence of chaos once not all 

strange attractors are chaotic, [26], [27]. 

Poincaré sections are very useful when it comes 

to evaluating the qualitative behaviour of continuous 

systems. By creating one or more sections each one 

transverse to the flow at a given point, and analysing 

the intersection of the orbits with each of these 

sections, a continuous system described by 𝑛 state 

variables is transformed into a discrete system of 

𝑛 − 1 variables which makes clearer the perception 

of its dynamics. An orbit of period one is thus 

characterized by a single point, an orbit of period 

two by two points, and so forth until arises a cloud 

of points indicating a chaotic motion. Poincaré 

sections allow to distinguish periodic-, quasi-

periodic-, and chaotic- vibrations. However, 

Poincaré sections are quite sensitive to the noise 

inevitable in real-world systems. Influenced by 

noise, each orbit can be slightly deviated at the exact 

instant it crosses the section, causing the appearance 

of numerous points and inducing in the presence of 

chaos, when the motion can be in fact periodic. 

Noise reduction techniques should be thus applied 

to minimize the effects of noise and if their 

characteristics are known the designer may consider 

small clouds of points as individual points. It is a 

strategy that simplifies the analysis, but that is 

useful only for quasi-periodic vibrations and when 

the periods are sufficiently distant from each other. 

Additionally, the flow may not have a global 

section, because it would have to be transversal to 

all possible orbits, and an inappropriate choice may 

cause the appearance of only a few points when in 

fact there may exist much more. 

The chaotic behaviour can be originated by 

different routes. Period-doubling, torus breakdown 

and intermittency are the three most common, and 

for many systems the period-doubling is a very 

common route, [23], [28]–[31]. In this in particular, 

the period increases in powers of two as one of the 

parameters is increased (or decreased), and as a 

result, the motion is said to be (multi)periodic when 

the system exhibits a finite number of states or 

chaotic when it exhibits an infinite number of states. 

The bifurcation diagram is a graphical tool based on 

this assumption that allows determining for which 

values of parameters occurs the chaotic behaviour. 

Bifurcation diagrams become a very useful tool 

when analysing nonlinear systems, insofar as they 

show the overall dynamics as a function of the 

parameters. However, the analysis has to be carried 

out offline, requires knowledge of the exact 

mathematical equations, depends on the human 

visual acuity to determine the type of behaviour, and 

only can predict the period-doubling route to chaos.  

In addition to the absence of a regular behaviour, 

chaotic systems are characterized essentially by high 

sensitivity to initial conditions: two trajectories 

initiated very close to each other move away over 

the time until lose any type of correlation between 

them. Based on this statement, the Lyapunov 

exponents characterize the rate of exponential 

divergence/convergence of nearby system 

trajectories, and as a result the dynamics is said to 

be chaotic when there is at least one positive 

exponent, [32]. The largest Lyapunov exponent is 

thus the most important number and allows to 

distinguish, not only a chaotic- from a regular- 

signal, but also a purely deterministic- from a 

stochastic- signal given the latter is characterized by 

a positive but infinite exponent, [33]. The largest 
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Lyapunov exponent may be estimated from time 

series, and for that purpose the works of [32], [34]–

[38] are the most relevant that can be found in 

literature. However, the method is not robust 

enough and it may fail under certain conditions. Due 

to the inevitable presence of noise in real systems, 

the largest exponent may result in a positive value, 

indicating thus the presence of chaos when the 

system exhibits actually a regular behaviour. 

Filtering techniques can be obviously applied in 

order to reduce the effects of noise, but there are 

also other drawbacks, among which stand out the 

reasonable/high computational effort demanded and 

the fact that it requires a time series with a 

sufficiently large number of samples. 

As opposed to a periodic- or multi-periodic- 

signal, where a spectral analysis reveals well-

defined frequencies, a chaotic signal is characterized 

by having a continuous frequency spectrum, 

broadband, but nonetheless limited, [23], [31], [33]. 

On one hand, the existence of many frequencies is a 

characteristic that distinguishes a chaotic- from a 

periodic- signal, and, on the other hand, a bounded 

spectrum allows to distinguish a chaotic- from a 

stochastic- signal because this latter presents 

distributed frequencies throughout the spectrum. If 

the time series under analysis is purely 

deterministic, chaos detection through a frequency 

spectrum observation is relatively simple. However, 

when the time series is corrupted with noise, the 

spectral analysis may fail because it becomes 

difficult to distinguish a chaotic- from a non-

chaotic- signal, given that the Fourier Transform 

exhibits frequencies in the entire spectrum due to 

the presence of noise. Filtering techniques shall be 

applied before the use of this tool to minimize the 

effects of noise. Nevertheless, a spectral analysis 

must be used with some precaution because, even 

when the signal is noise-free, it may occur that the 

distinction between a quasi-periodic signal of many 

periods and a chaotic signal is not so clear due to the 

presence of several frequencies very close to each 

other. 

For the cases where the distinction between a 

chaotic signal and a quasi-periodic signal of many 

periods very close to each other is not so clear, the 

autocorrelation function is a very useful tool, [23], 

[33]. Related to the Fourier Transform, it allows 

distinguishing a periodic- from a chaotic- or a 

stochastic- signal. When the time series is periodic 

in time, the autocorrelation function, which relates 

the time series with the same time series with a lag, 

is periodic in the lag. When the time series is 

generated through a deterministic chaotic system, 

the autocorrelation function decays exponentially to 

zero as the lag increases. If the time series is 

stochastic, the autocorrelation function tends to zero 

as the lag increases, but with a decay rate that 

depends on the properties of the process. The 

autocorrelation function allows distinguishing a 

periodic- from a chaotic- or a stochastic- signal. 

Nevertheless, it is not powerful enough to 

distinguish a chaotic- from a stochastic- signal since 

the function tends to zero in both cases. 

The Melnikov analysis is an analytical tool used 

in many cases to predict the occurrence of chaos in 

nonlinear systems subject to small disturbances. In 

its classical form, the method was developed for 

time-varying smooth bi-dimensional systems, 

assuming knowledge of a homoclinic orbit 

associated to a saddle point of the unperturbed 

system. The presence of chaos is then declared if the 

Melnikov function presents at least a simple zero, 

[39], [40]. Analytical approaches are no doubt more 

powerful than numerical ones, and in that sense the 

methods based on the Melnikov theory are quite 

reliable. Nevertheless, the methods are not ideal and 

have hence some relevant drawbacks, [41]–[43]: 1) 

they can predict only the homoclinic/heteroclinic 

chaos; 2) for general disturbances, the detection may 

fail;    and 3), they are associated to cumbersome 

algebraic computations. In addition, the methods 

based on Melnikov are analytical, requiring 

therefore the exact knowledge of the model as well 

the exact knowledge of the disturbances, and in that 

sense they are not appropriate at all to detect chaos 

in real-world applications because the models are 

known very often only with a degree of certainty 

and the disturbances are almost always unknown. 

Since chaos is characterized by unpredictability 

of the system trajectories and by critical sensitivity 

to initial conditions, Awrejcewicz and Dzyubak, [7], 

proposed a numerical method to trace the domains 

of chaoticity and regularity of any nonlinear system 

governed by ordinary differential equations. Entitled 

by analysis of wandering trajectories, the method 

compares, at each step, the error between two 

trajectories started with initial conditions very close 

to each other with a specified threshold, and that 

comparison/test allows determining the chaoticity 

regions as functions of the parameters. It has been 

proven that the method is much simpler and faster 

from the computational point of view than the well-

known Lyapunov exponents, [41]. However, the 

analysis of wandering trajectories requires a priori 

knowledge of the model, because only thus it can be 

integrated starting from two initial conditions, and 

because of this it cannot be used to detect chaos 

from time series. On the other hand, even if the 

model is known, any real-world system is almost 
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always subject to unknown uncertainties which may 

change its behaviour considerably, and due to such 

uncertainties the trajectories obtained by integration 

of the model may not describe accurately the true 

dynamics of the real system. 

The method proposed by Poon and Barahona, 

[6], allows the detection of chaos from time series 

even when the series is short or is corrupted with 

measurement noise, and in that sense their work 

stands out among all other numerical techniques. 

Designated by Noise Titration, the method consists 

in adding successively small quantities of noise to 

the time series until the nonlinearity of a specified 

autoregressive Volterra model be completely 

destroyed. Then, the maximum amount of noise 

required to destroy that nonlinearity indicates 

whether the time series is chaotic or not. The 

method is considered superior to the Lyapunov 

exponents, [44], [45], and although it seems to be at 

first glance an ideal approach to detect chaos, it has 

been reported several cases where the detection 

actually fails, [46]. On the other hand, the method 

requires a successive addition of small amounts of 

noise, a procedure which makes the detection 

process time-consuming and that is obviously not 

desired. 

Gottwald and Melbourne, [2], [5], developed a 

very interesting method for chaos detection from 

time series that works effectively even in the 

presence of low levels of measurement noise. 

Designated by 0-1 Test, it is a binary test that 

distinguishes between chaotic from non-chaotic data 

based on a measure of the asymptotic growth rate of 

the mean square displacement between two 

functions. The theory behind the method is indeed 

interesting and that brings several favourable points 

face to the other detection tools. It is applicable to a 

single time series, whereby it does not require the 

model of the system; it does not require any visual 

aids in the decision process, meaning that chaos can 

be detected automatically; and it allows an online 

detection if the length observation window is not too 

large. However, the 0-1 Test is formulated under the 

hypothesis of deterministic signals, and in that sense 

it can only detect the so-called pure deterministic 

chaos. Stochastic signals are identified as being 

chaotic when actually they are not. On the other 

hand, the method may fail for some deterministic 

systems or when sampling frequency to get the time 

series is not appropriate. 

Very recently, Fouda et al., [1], formulated a 

method capable of discerning clearly between 

chaotic-, periodic- and quasi-periodic- motions. 

Entitled by Three-State Test (3ST), the method is 

based on a function that measures the ability of a 

given dynamical system generates new patterns as 

the time increases. As opposed to the 0-1 Test, 

which only distinguishes between chaotic- from 

non-chaotic- signals, the 3ST is clearly more 

efficient from the computational point of view, and 

in that sense it would be an excellent test for 

detection in real-time. Nevertheless, like any other 

chaos detection method, the 3ST is highly sensitive 

to small changes in the input, whereby it is only 

effective for a level of noise sufficiently small. 

Another drawback is related to size of the 

observation window. If the number of samples is not 

sufficiently representative, the test tends to confuse 

quasi-periodic motions to weak chaos. Lastly, but 

also important, even that filters are applied to reduce 

the level of noise, the test is applicable only to 

discrete-time systems and requires yet an extension 

for the case of continuous-time systems. 

In addition to the aforementioned techniques, 

approaches based on different concepts of detection 

have been also explored, [3], [4], [47]–[49]. 

However, the authors have noticed that the methods 

proposed so far have some common drawbacks that 

make them inappropriate for a detection in real-time 

or in noisy environments. It occurs that for some 

demanding applications as in the aerospace and 

aeronautical fields, the presence of chaos must be 

detected satisfying certain requisites: 1) chaos must 

be detected in an automatic way; 2) it should be 

detected from time series because the exact model 

of the system may not be known with accuracy 

and/or there may exist disturbances of unknown 

properties; 3) it should be detected preferentially 

from short time series because it is desirable to 

reach a detection as fast as possible in order to 

trigger a control action; 4) the detector must be 

robust against measurement noise once the noise 

cannot be avoided; and lastly, 5), the detection 

algorithm should not be time-consuming since the 

problem requires a real-time solution. 

 

 

3 Problem Statement 

Consider a continuous-time dynamical system 

governed by a set of ordinary differential equations 

and assume that only one of its outputs is available 

for measurement. That is, a system described by the 

following mathematical model: 

 
𝑥̇ = 𝑓(𝑥, 𝑢, 𝑡) + 𝑔(𝑥, 𝑡)

𝑦 = ℎ(𝑥, 𝑢, 𝑡)

𝑦𝑜𝑏𝑠[𝑛] = 𝑐𝑇𝑦[𝑛] + 𝑤[𝑛]

               (1)                                
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𝒕 

𝒛𝟐 

∆𝑡1 ∆𝑡2   … ∆𝑡𝑘 ∆𝑡1 ∆𝑡2   … ∆𝑡𝑘 … … … ∆𝑡𝑘 

𝑡1 𝑡2 𝑡4 𝑡3 𝑡5 𝑡6 𝑡8 𝑡7 … … 𝑡𝑁 … 

Observation window 1 𝑁 − 1 

where 𝑥 ∈ ℝ𝑛 denotes the state vector, 𝑦 ∈ ℝ𝑞 the 

output vector, 𝑢 ∈ ℝ𝑚 the control vector, 𝑓, 𝑔, ℎ 

three vector-valued nonlinear functions, 𝑡 the time, 

and 𝑥̇ = 𝑑𝑥/𝑑𝑡. The third equation, 𝑦𝑜𝑏𝑠 ∈ ℝ, 

denotes the unique observable output of the system, 

which is measured with a specified constant 

sampling frequency, 𝑓𝑠 = 1/𝑑𝑡, and takes into 

account Additive White Gaussian Noise (AWGN), 

𝑤, representing the noise introduced inevitably by 

the measurement sensor or resulting from a given 

data fusion algorithm. 𝑐 ∈ ℝ𝑞 denotes the output 

vector. In the first equation, 𝑔 may be unknown, it 

represents possible unmodeled dynamics, parameter 

uncertainties, and/or external time-varying 

disturbances. 

 

Since model (1) is described by nonlinear functions, 

it may exhibit, as well-known: an equilibrium state; 

a periodic motion; a quasi-periodic motion; or a 

chaotic motion, depending on the values of the 

parameters and on eventual external disturbances if 

they meet specific characteristics (frequency and 

amplitude). The chaotic motion may be desirable or 

not depending on the application. However, for 

most dynamical systems a chaotic motion is not 

desired because it can lead to a catastrophic 

scenario. Then, the problem to be solved consists in 

formulating an automatic chaos detector capable of 

detecting the occurrence of chaotic modes in real-

time, assuming that 𝑦𝑜𝑏𝑠 is the unique available 

information and that it is corrupted with 

measurement noise 𝑤. 

 

 

4 The Proposed Algorithm 

Consider a continuous-time, time-invariant, bi-

dimensional and stable auxiliary linear system, 

described as follows, 𝑧̇ = 𝐴𝑧 + 𝑏𝑦𝑜𝑏𝑠: 

 

[
𝑧̇1
𝑧̇2
] = [

𝑎11 𝑎12
𝑎21 𝑎22

] [
𝑧1
𝑧2
] + [

𝑏1
𝑏2
] 𝑦𝑜𝑏𝑠         (2)                                    

 

where 𝑧 ∈ ℝ2 denotes the state vector, 𝑦𝑜𝑏𝑠 ∈ ℝ the 

control variable that corresponds to the signal under 

analysis, 𝐴 ∈ ℝ2×2 an Hurwitz state matrix, that is, 

a matrix whose all its eigenvalues are in the open 

left half plane, Re[𝜆𝑖(𝐴)] < 0, 𝑖 = 1,2, and 𝑏 ∈ ℝ2 

the control vector, with 𝑏 ≠ 0. 

 

Let equation (2) be solved using an appropriate 

method (e.g.: Euler, Runge-Kutta) step-by-step as 

each new measurement 𝑦𝑜𝑏𝑠(𝑛) is available, that is, 

with a step size = 𝑑𝑡. Consider then a sliding 

observation window of length 𝑁 points comprising 

the time-instants 𝑡1, 𝑡2, … , 𝑡𝑁 for which 𝑧2 presents 

local maxima, where the oldest 𝑡𝑖 is discarded each 

time a new maximum is found and the newest 𝑡𝑗 is 

introduced based on a FIFO (First-In, First-Out) 

philosophy. Compute now the ∆𝑡′𝑠, ∆𝑡𝑛 = 𝑡𝑛+1 −
𝑡𝑛, between each two consecutive local maxima and 

obtain a time series of 𝑁 − 1 points. In the absence 

of noise, there will be a finite number 𝑘 of repeated 

∆𝑡′𝑠 for the case of a regular time series, no matter 

how many periods the signal has, and an ‘infinite’ 

number 𝑘 of different ∆𝑡′𝑠 for the case of a chaotic 

time series. This is the key idea behind the new 

chaos detector. Chaos is characterized by a highly 

unpredictable motion which displays infinite local 

maxima at different time-instants. Fig. 1 depicts the 

observation window for a regular signal 𝑧2(𝑡). 
 

 

 

 

 

 

 

 
 

 

The next step consists in sorting the Δ𝑡′𝑠 in 

ascending order (↗). This yields a time series in the 

form of stairs (finite 𝑘), as depicted in the upper plot 

of Fig. 2, for the case of a regular signal 𝑧2, or a 

time series with the appearance of an exponential 

function (‘infinite’ 𝑘) for the case of a chaotic 𝑧2. 

Then, computing the ∆(∆𝑡)′𝑠, ∆(∆𝑡)𝑛 = ∆𝑡𝑛+1 −
∆𝑡𝑛, one obtains a time series of 𝑁 − 2 points 

containing the variations between different stairs, or, 

in another words, the numerical derivative of that 

time series. It occurs that there will be 𝑘 − 1 

different stairs, where 𝑘 is a finite number for a 

regular 𝑧2 and an ‘infinite’ number (or at least very 

large) for a chaotic 𝑧2. It is noteworthy that the 

number of different stairs depends exclusively on 

the complexity of 𝑧2 since there is no any 

relationship with the size of the observation 

window. The more unpredictable is the trajectory 

the more distinct stairs will exist. The last step 

consists in discarding the isolated peaks, that is, the 

points whose values immediately before and after 

Fig. 1. Determination of the observation window: time-instants 

for which 𝑧2 has local maxima. 
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them are both zero. Fig. 2 portrays the entire 

procedure taking into account a regular signal 𝑧2. 

 

 
 

 

By carrying out this procedure for each observation 

window, chaos is easily distinguished from the 

regular motion. The resulting time series (a vector, 

computationally speaking) is a null vector if 𝑧2 is a 

regular signal or a vector where most of its points 

are above the zero line if 𝑧2 is a chaotic signal. In 

order to detect automatically this difference, without 

resorting to any visual aids, one defines the 

following ratio: 

 

 𝑅 =
𝑛º 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑧𝑒𝑟𝑜

𝑛º 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑧𝑒𝑟𝑜
 (3) 

 

Thus, a regular motion (periodic / multi-periodic) is 

characterized by a ratio 𝑅 = 0 and a chaotic motion 

by a ratio 𝑅 ≫ 0 when 𝑧2 is a ‘clean’ signal, 𝑤 = 0. 

In the presence of noise, 𝑤 ≠ 0, it occurs that 𝑅 is 

slightly greater than zero. The detection is then 

completed based on a specified (small) threshold 𝛾, 

𝛾 > 0, being obviously that the greater is the power 

of the noise the greater should to be 𝛾. 

 

As a matter of convenience the algorithm is 

summarized below: 

 

 

4.1  Algorithm of the New Chaos Detector 

1) consider an observation window of 𝑁 points and 

initialize it with zeros; 

2) initialize the ratio 𝑅 with zero, 𝑅(0) = 0; 

3) get 𝑦𝑜𝑏𝑠(𝑛) with a specified sampling period 𝑑𝑡; 
𝑛 = 1,2,… 

4) solve 𝑧̇ = 𝐴𝑧 + 𝑏𝑦𝑜𝑏𝑠 step-by-step with a step size =
𝑑𝑡; 

5) if 𝑧2(𝑛) is a local maximum 

            update the observation window with the respective   

            arg max 𝑡𝑛; 

            calculate the ∆𝑡′𝑠 between the local maxima,  

            ∆𝑡𝑛 = 𝑡𝑛+1 − 𝑡𝑛; 

            sort the ∆𝑡′𝑠 in ascending order ↗; 

            calculate the ∆(∆𝑡)′𝑠, ∆(∆𝑡)𝑛 = ∆𝑡𝑛+1 − ∆𝑡𝑛; 

            discard the points whose values immediately before   

            and after are both zero; 

            compute the ratio 𝑅(𝑛); 

      else 

            keep the previous ratio, 𝑅(𝑛) = 𝑅(𝑛 − 1); 

      end 

6) if 𝑅(𝑛) > 𝛾, with 𝛾 > 0 

           “chaotic behaviour” 

     𝑅𝑏𝑖−𝑠𝑡𝑎𝑡𝑒(𝑛) = true 

      else 

           “regular behaviour” 

     𝑅𝑏𝑖−𝑠𝑡𝑎𝑡𝑒(𝑛) = false 

      end 

7) go indefinitely to step (3); 

 

 

Note that the proposed algorithm is always feasible 

unless the running time between steps (3) and (6), 

∆𝑇, exceeds the elapsed time between successive 

measurements, 𝑦𝑜𝑏𝑠(𝑛), 𝑛 = 1, 2, …, that is, the 

sampling period, defined by 𝑑𝑡. This way, ∆𝑇 < 𝑑𝑡 
is the unique feasibility condition to allow a real-

time detection. Another remark that is worth 

mentioning can be found in step (5). Given the need 

of finding the local maxima of 𝑧2, the algorithm 

must be applied considering a delay of one 

measurement 𝑦𝑜𝑏𝑠(𝑛) because it is needed three 

points to determine whether the midpoint is a local 

maximum or not. Nevertheless, this is not 

problematic since a single point has no effect when 

deciding the type of behaviour. 

 

In the absence of noise, 𝑤 = 0, the idea behind the 

detector could be applied directly to an observation 

window containing the time-instants 𝑡1, … , 𝑡𝑁 for 

which 𝑦𝑜𝑏𝑠 exhibits local maxima. Nevertheless, 

when 𝑦𝑜𝑏𝑠 is corrupted with noise, 𝑤 ≠ 0, the 

method would be no longer effective because WGN 

has random maxima at random samples. The 

obvious thought would be the introduction of noise-

Fig. 2. Representation of ∆𝑡𝑚 in ascending order (↗) – upper 

plot; and representation of ∆(∆𝑡𝑚) (black/solid line) and 

∆(∆𝑡𝑚) with isolated peaks removed (red/dashed line) – lower 

plot. 

∆𝑡1 

∆𝑡𝑘 

∆𝑡2 

… 

∆𝒕𝒎 

↗  

𝒎 𝑁 − 1 1 

∆ 
∆𝒕𝒎
↗

  

𝒎 𝑁 − 2 1 
0 

0 
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reduction techniques such as Kalman filters since 

they are applicable in real-time. However, that 

solution would not ensure a successful detection 

because the underlying dynamics of chaotic systems 

is not localized either in the time or in the frequency 

domain. That is why equation (2) plays an important 

role. Being a linear system and 𝐴 a stable matrix, 𝑧2 

has not necessarily the waveform of 𝑦𝑜𝑏𝑠 but 

inherits its essential dynamics, acting therefore as a 

‘noise reducer’. A noisy signal 𝑦𝑜𝑏𝑠 with a specified 

SNR produces a noisy signal 𝑧2 with a SNR 

substantially lower. Otherwise, the signal directly 

under analysis, 𝑦𝑜𝑏𝑠, would exhibit an ‘infinite’ 

number - very large, depending on the size of the 

observation window - of local maxima due to the 

presence of noise, and chaos would be confused 

with a purely stochastic signal. 

 

 

5 Simulation Results 

This section deals with the validation of the 

proposed detector. Numerical simulations are 

carried out for three applications: a butterfly-shaped 

system similar to the well-known Lorenz system; 

and two aerospace systems - the attitude motion of a 

magnetic rigid spacecraft in an elliptical orbit, and 

the attitude motion of an electro-mechanical 

gyrostat. The transition between the regular to the 

chaotic behaviour occurs through a change of the 

system parameters, representing possible parameter 

uncertainties. White Gaussian Noise is added to the 

observable outputs to prove the robustness of the 

detector. 

 

 

5.1  Application 1: Butterfly-Shaped System 

Consider a three-dimensional, continuous-time, 

time-invariant nonlinear system with dynamics 

described by the following differential equations, 

[50]: 

 
𝑥̇1 = 𝑎(𝑥2 − 𝑥1 + 𝑥2𝑥3)
𝑥̇2 = 𝑏𝑥2 − ℎ𝑥1𝑥3
𝑥̇3 = 𝑘𝑥2 − 𝑔𝑥3

                 (4)   

                                           

wherein 𝑥1, 𝑥2, 𝑥3 denote the system state variables 

and 𝑎, 𝑏, ℎ, 𝑘, 𝑔 the system parameters. System (4) 

exhibits periodic-, quasi-periodic-, or chaotic- 

trajectories, depending on the values of the 

parameters. For 𝑎 = ℎ = 𝑘 = 1.0, 𝑏 = 2.5, and 

𝑔 = 3.9, the system exhibits a transverse butterfly-

shaped attractor similar to the well-known Lorenz 

attractor as depicted in Fig. 3. Increasing 𝑔 

continuously within the interval 𝑔 ∈ [3.0, 4.0] and 

keeping all the other parameters unchanged, occurs 

a successive period-doubling that leads a regular- to 

a chaotic- behaviour as shows the bifurcation 

diagram of the first state variable, 𝑥1, see Fig. 4: 

 

 

Fig. 3. Chaotic attractor for 𝑔 = 3.9. 

 

 

 

Fig. 4. Bifurcation diagram of the variable 𝑥1. 

 

 

5.1.1  Simulation 

For simulation purposes, equations (4) were solved 

through the RK-Butcher method between 𝑡0 = 0 

and 𝑡𝑓 = 1000 s, with a step of 𝛿𝑡 = 0.005 s, and 

departing from initial conditions 𝑥0 = [𝑥1,
𝑥2,  𝑥3]0

𝑇 = [1, 1, 1]𝑇. The first state variable, 𝑥1, is 

taken as the observable output, and it is based on it 

that the detector classifies the type of motion. The 

‘measurements’, 𝑦𝑜𝑏𝑠(𝑛) = 𝑥1(𝑛) + 𝑤(𝑛), are 

carried out with a sampling period of 𝑑𝑡 = 0.01 s 
considering a Signal-to-Noise Ratio of SNR =
14 dB, that is, a relationship of 5: 1. The 

observation window has length 𝑁 = 50 points and 

equation 𝑧̇ the following form: 
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[
𝑧̇1
𝑧̇2
] = [

−0.5    0
   1 −0.5

] [
𝑧1
𝑧2
] + [

1
0
] 𝑦𝑜𝑏𝑠  ,  𝑧0 = [

0
0
] 

(5) 

 

where 𝐴 is a stable matrix with eigenvalues 

𝜆 = (−0.5,−0.5). The threshold between the 

regular- and the chaotic- behaviour was set in 𝛾 =
5.  

 

Fig. 5 shows the results. The first plot represents the 

variation over the time of parameter 𝑔 - the 

parameter used to trigger different types of 

behaviour; the second plot represents the output of 

the system, 𝑦 = 𝑥1; the third plot the measured 

signal, 𝑦𝑜𝑏𝑠(𝑛) = 𝑥1(𝑛) + 𝑤(𝑛); and the last plot 

the output of the detector: 𝑅 given by equation (3); 

and 𝑅 bi-state indicating a chaotic or a non-chaotic 

behaviour based on the threshold 𝛾. 

 

 

Fig. 5. Chaos detection in the butterfly-shaped system. 

 

 

5.2  Application 2: Attitude Motion of a 

Magnetic Rigid Spacecraft in an Elliptical 

Orbit 

The attitude motion of an uncontrolled magnetic 

rigid spacecraft, with internal damping, moving in 

an elliptical orbit subject to both gravitational and 

magnetic fields of the Earth, is given by equations, 

[51], [52]: 

 
𝑑𝑥1
𝑑𝜈

= 𝑥2

𝑑𝑥2
𝑑𝜈

=
2𝑒 sin𝑥3

1 + 𝑒 cos 𝑥3
(1 + 𝑥2) −

𝜅 sin2𝑥1
1 + 𝑒 cos 𝑥3

+⋯

                                      …− 
𝛾

(1 + 𝑒 cos 𝑥3)
2
𝑥2 +⋯

   …+ 𝛼
3 cos(𝑥1 − 𝑥3 −𝜔) − cos(𝑥1 + 𝑥3 +𝜔)

1 + 𝑒 cos 𝑥3

 

 

 

 
𝑑𝑥3
𝑑𝜈

= 1 (6) 

 

where 𝑥1 = 𝜙, 𝑥2 = 𝑑𝜙/𝑑𝜈, 𝑥3 = 𝜈, in which 𝜙 

denotes the libration angle in the orbital plane, 𝜈 the 

true anomaly of the spacecraft, that is, the angle 

between the perigee and the vehicle, measured in 

the plane of the orbit, 𝜔 the argument of perigee, 

that is, the angle between the ascending node and 

the perigee, 𝑒 the orbital eccentricity, 𝜅 a parameter 

related to the principal moments of inertia, that 

describes therefore the spacecraft’s asymmetry, 𝛾 

the damping coefficient, and 𝛼 a magnetic 

parameter describing the strength of the magnetic 

interaction between the Earth’s magnetic field and 

the magnetic moment of the spacecraft. The angles 

𝜈, 𝜙, 𝜔 are expressed in rad. 
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System (6) exhibits a regular behaviour for the 

values of parameters presented in (i) and a chaotic 

behaviour for the parameters in (ii). A tiny variation 

in the magnetic parameter, δ𝛼 = 0.001, is enough 

to trigger an unpredictable motion, which is one of 

the main characteristics of chaotic systems: high 

sensitivity to parameter changes. The phase-spaces, 

or more precisely the phase-planes 𝑥1 − 𝑥2 because 

the original system is ‘time’-varying and there is no 

interest in representing the third variable 𝑥3, are 

depicted in Figs. 6 and 7 respectively for the 

condition of regular/periodic- and chaotic- motion.  

 

(i)  𝑒 = 0.2, 𝜅 = 1.0, 𝛾 = 0.1, 𝜔 = 60. 𝜋/180,       

        𝛼 = 0.336                      (regular behaviour) 

 

(ii) 𝑒 = 0.2, 𝜅 = 1.0, 𝛾 = 0.1, 𝜔 = 60. 𝜋/180,    

        𝛼 = 0.337                      (chaotic behaviour) 

 

 

 

Fig. 6. Periodic motion for 𝛼 = 0.336. 

 

 

 

Fig. 7. Chaotic motion for 𝛼 = 0.337. 

 

5.2.1  Simulation 

For this application, equations (6) were solved 

through the RK-Butcher method between 𝜈0 = 0 

and 𝜈𝑓 = 2𝜋. 1000 rad (the spacecraft travels 1000 

laps in the orbital plane), with a step of 𝛿𝜈 =
2𝜋/200 rad, and departing from initial conditions 

𝑥0 = [𝜙, 𝑑𝜙/𝑑𝜈, 𝜈]0
𝑇  = [0, 0, 0]𝑇. The observable 

output taken into consideration is the second state 

variable, 𝑥2 = 𝑑𝜙/𝑑𝜈, the ‘measurements’, 

𝑦𝑜𝑏𝑠(𝑛) = 𝑥2(𝑛) + 𝑤(𝑛), are performed with a 

sampling rate of 𝑑𝜈 = 2𝜋/100 rad, and the level of 

noise is SNR = 10 dB (≅ 3: 1). The observation 

window has length 𝑁 = 50 points and equation 𝑧̇ 

the following form: 

 

[
𝑧̇1
𝑧̇2
] = [

−1    0
   1 −1

] [
𝑧1
𝑧2
] + [

1
0
] 𝑦𝑜𝑏𝑠    ,    𝑧0 = [

0
0
] 

                               (7) 

 

where 𝐴 is a stable matrix with eigenvalues 

𝜆 = (−1,−1). The threshold between the regular- 

and the chaotic- behaviour was set in 𝛾 = 1. 

 

Fig. 8 shows the results. The first plot represents the 

variation of the magnetic parameter, 𝛼, along the 

position of the spacecraft in its orbit - the parameter 

used to toggle between the regular- and the chaotic- 

behaviour; the second plot represents the output of 

the system, 𝑦 = 𝑑𝜙/𝑑𝜈; the third the measured 

signal, 𝑦𝑜𝑏𝑠(𝑛) = 𝑑𝜙/𝑑𝜈(𝑛) + 𝑤(𝑛); and the last 

plot the output of the detector: 𝑅 given by equation 

(3); and 𝑅 bi-state indicating a chaotic- or a non-

chaotic- behaviour based on the threshold 𝛾. 
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Fig. 8. Chaos detection in the attitude motion of a magnetic rigid spacecraft in an elliptical orbit. 

 

 

5.3  Application 3: Dynamics of an Electro-

Mechanical Gyrostat 

An electro-mechanical gyrostat is a fourth-order, 

time-varying, nonlinear system with great interest in 

the aerospace field. It consists of three rotors 

orthogonal to each other aligned with the principal 

axes of inertia of the body (e.g.: satellite, spacecraft, 

etc.), that allow the control of the attitude motion by 

varying the torque produced by a control-motor. The 

dynamical model of an electro-mechanical gyrostat 

can be expressed as, [53], [54]:  

 

𝑥̇ = (𝐴 + 𝐴1(𝑡))𝑥 + 𝜑(𝑥, 𝑡)              (8)                                          

 

with: 

 

𝐴 = [

−𝑘1/𝐼1 −ℎ3/𝐼1    ℎ2/𝐼1     0
  ℎ3/𝐼2 −𝑘3/𝐼2 −ℎ1/𝐼2     0
−ℎ2/𝐼3    ℎ1/𝐼3 −(𝑏 + 𝑘5)/𝐼3     𝐾𝑇/𝐼3
   0    0 −(𝐾𝑎 + 𝐾𝑏)/𝐿  −𝑅/𝐿

]  

 

 

 

𝐴1(𝑡) = [

0 −ℎ3/𝐼1. 𝑓𝑐𝑜𝑠(𝜔𝑡) 0 0

ℎ3/𝐼2. 𝑓𝑐𝑜𝑠(𝜔𝑡) 0 0 0
0 0 0 0
0 0 0 0

] 

𝜑(𝑥, 𝑡) =

[
 
 
 

(𝐼2 − 𝐼3)/𝐼1. 𝑥2𝑥3
(𝐼3 − 𝐼1)/𝐼2. 𝑥1𝑥3

(𝐼1 − 𝐼2)/𝐼3. 𝑥1𝑥2 + 𝑘6/𝐼3. (𝜔𝑟
3 − 𝑥3

3)
𝐾𝑎/𝐿. 𝜔𝑟 ]

 
 
 

+ 𝜂 

 

𝜂 = [

𝑘2/𝐼1. (𝜔𝑟
3 − 𝑥1

3) + 𝑘1/𝐼1. 𝜔𝑟

𝑘4/𝐼2. (𝜔𝑟
3 − 𝑥2

3) + 𝑘3/𝐼2. 𝜔𝑟

𝑘5/𝐼3. 𝜔𝑟 + ℎ3/𝐼3. 𝑓𝜔 sin(𝜔𝑡)
0

] 

(9) 

 

with 𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]
𝑇 = [𝜔𝑥, 𝜔𝑦, 𝜔𝑧, 𝑖]

𝑇, where 

𝜔𝑥 , 𝜔𝑦, 𝜔𝑧 denote the angular velocities of the 

gyrostat on the axes 𝑥, 𝑦, 𝑧, respectively, and 𝑖 the 

electric current of the control-motor. 𝐼1, 𝐼2, 𝐼3 

represent the principal moments of inertia of the 

gyrostat, ℎ1, ℎ2, ℎ3 the angular moments of the 

rotors - located on the axes 𝑥, 𝑦, 𝑧, respectively, 𝜔𝑟 

the projection of the angular velocity of the gyrostat 

on the axes 𝑥, 𝑦, 𝑧 for which it was designed, and 𝑏 

the damping coefficient. 𝐾𝑇 , 𝐿, 𝑅 denote respectively 

the torque constant, the inductance and the 

resistance of the control-motor. 𝐾𝑎 , 𝐾𝑏 are two 

parameters related respectively to the electromotive 

and counter-electromotive forces of the control-

motor. The angular moment of the third rotor, ℎ3, is 

subject to a time-periodic disturbance of the form 

ℎ3. 𝑓 cos(𝜔𝑡), so that 𝑓 and 𝜔 denote respectively 

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.3

0.4

0.5

  [nº of laps]

 

 



0 100 200 300 400 500 600 700 800 900 1000
-200

0

200

400

  [nº of laps]

 

 

d  / d 

0 100 200 300 400 500 600 700 800 900 1000
-200

0

200

400

  [nº of laps]

 

 

y
obs

0 100 200 300 400 500 600 700 800 900 1000

0

5

10

  [nº of laps]

 

 

R

R bi-state

periodic  motion
chaotic  motion

periodic  motion
chaotic  motion

periodic  motion

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Carlos M. N. Velosa, Kouamana Bousson

E-ISSN: 2224-2856 745 Volume 10, 2015



the magnitude and the excitation frequency. The 

angular velocities 𝜔𝑥 , 𝜔𝑦, 𝜔𝑧 are expressed in rad/s 

and the electric current 𝑖 in A.  

 

System (8) exhibits a regular behaviour for the 

values of parameters presented below along with 

condition (i), and a chaotic behaviour with condition 

(ii). A variation in the magnitude of the disturbance 

of ℎ3 is sufficient to trigger a chaotic dynamics. The 

respective phase-spaces, or, specifically, the phase-

planes with variables 𝑥4 − 𝑥1 − 𝑥2, are shown in 

Figs. 9 and 10. 

 

𝐼1 = 𝐼2 = 500,   𝐼3 = 1000,   ℎ1 = ℎ2 = 200, 

ℎ3 = 250,   𝑘𝑖 = 1 (𝑖 = 1,… ,6),    𝐾𝑇 = 300, 

𝐾𝑎 = 50, 𝐾𝑏 = 1.3, 𝐿 = 2, 𝑅 = 100, 𝜔𝑟 = 0, 

𝜔 = 1,  𝑏 = 200 

 

(i)    𝑓 = 13.6                (regular behaviour) 

(ii)   𝑓 = 12.9                (chaotic behaviour) 

 

 

Fig. 9. Periodic motion for 𝑓 = 13.6. 

 

 

Fig. 10. Chaotic motion for 𝑓 = 12.9. 

5.3.1  Simulation 

In this application, equation (8) was solved through 

the RK-Butcher method for time-varying systems, 

between 𝑡0 = 0 and 𝑡𝑓 = 1800 s, with a step of 

𝛿𝑡 = 0.01 s, and departing from initial condition 

𝑥0 = [𝜔𝑥 , 𝜔𝑦, 𝜔𝑧, 𝑖]0
𝑇 = [0, 0, 0, 0]𝑇. The observable 

output taken into consideration is the first state 

variable, 𝑥1 = 𝜔𝑥, the ‘measurements’, 𝑦𝑜𝑏𝑠(𝑛) =
𝑥1(𝑛) + 𝑤(𝑛), are performed with a sampling 

period of 𝑑𝑡 = 0.01 s, and the level of signal 

degradation with WGN is SNR = 10 dB (≅ 3: 1). 
The observation window has length 𝑁 = 50 points 

and equation 𝑧̇ the following form: 

 

[
𝑧̇1
𝑧̇2
] = [

−1    0
   1 −1

] [
𝑧1
𝑧2
] + [

1
0
] 𝑦𝑜𝑏𝑠    ,    𝑧0 = [

0
0
]                                

(10) 

 

where 𝐴 is a stable matrix with eigenvalues 

𝜆 = (−1,−1), and the threshold was set in 𝛾 = 1. 

 

Fig. 11 shows the results after discarding the initial 

transient regime (300 s). The first plot represents 

the variation over the time of the parameter 𝑓 - the 

parameter used to toggle between the regular- and 

the chaotic- behaviour; the second plot represents 

the output of the system, 𝑦 = 𝜔𝑥; the third plot the 

measured signal, 𝑦𝑜𝑏𝑠(𝑛) = 𝜔𝑥(𝑛) + 𝑤(𝑛); and the 

last plot the output of the detector: 𝑅 given by 

equation (3); and 𝑅 bi-state indicating a chaotic- or 

a non-chaotic- behaviour based on the threshold 𝛾. 
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Fig. 11. Chaos detection in the dynamics of an electro-mechanical gyrostat. 

 

 

6 Discussion 

The results show that the chaotic dynamics is 

effectively detected in all three applications, from a 

single time series, and corrupted with WGN. 

Obviously, there is a small delay between each 

transition - from the regular- to the chaotic- 

behaviour, and vice versa - see Figs. 5, 8, 11, but 

which is perfectly normal since, like any other 

detection method, a representative sample of the 

signal is required to characterize the type of motion. 

As is intuitive, the greater is the length of the 

observation window 𝑁, the greater is the delay of 

the detection, and in that sense the proposed 

detector works very well with a short window of 

only 𝑁 = 50 points, regardless of a slow or a fast 

dynamics. Conversely, as the power of the noise 

increases, that is, for lowers SNRdB = 20 log  (𝐴𝑠/
𝜎𝑛), greater must be the observation window to 

counteract the effects of noise. There is therefore a 

compromise between the length of the observation 

window 𝑁, the SNR of the measured signal 𝑦𝑜𝑏𝑠, 

and the delay of the detection. Even so, recall that 

there is always a transient regime between each 

transition, where the motion is neither regular nor 

chaotic, and therefore the delays observed in Figs. 5, 

8, 11 can be considered as being really short.  

 

Another worth mentioning point is related to the 

value of 𝑅. According to the description of the 

algorithm, where for a ‘clean’ signal (𝑤 = 0), 
𝑅 = 0 specifies a regular behaviour and 𝑅 ≫ 0 a 

chaotic behaviour, it is evident that the more chaotic 

is the signal 𝑦𝑜𝑏𝑠, the greater is the value of 𝑅, and 

the same applies to a corrupted signal (𝑤 ≠ 0). 
Despite not being presented here because it is not of 

great relevance for the present paper, simulations 

were also performed using as inputs the signal of a 

chaotic attractor (3D Rössler system, [55]) and the 

signal of a hyperchaotic attractor (4D Rössler 

system, [56]) to verify that 𝑅 is indeed greater. 

The results show also that the distinction 

between the regular- and the chaotic- behaviour is 

extremely clear. As depicted in Fig. 5, a chaotic 

behaviour, 𝑅 > 𝛾, is indicated only and only when 

the measured signal, 𝑦𝑜𝑏𝑠, is in fact chaotic. The 

transitions between different periodic behaviours 

(period 1 → period 2 → period 4) are identified as 

being regular behaviours, 𝑅 ≤ 𝛾, as desired. 

Unsurprisingly, there is a slight change in the value 

of 𝑅 but which is obviously not enough to reach the 

specified threshold 𝛾 given the number of points of 

the observation window. 
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With respect to the value of the threshold 𝛾, one 

knows that, for a ‘clean’ signal 𝑦𝑜𝑏𝑠, the value of 𝑅 

is practically zero in case of a regular input and 

much greater than zero in case of a chaotic input; 

𝑅 ≈ 0 and 𝑅 ≫ 0, respectively; so that the threshold 

can be set, for example, in 𝛾 = 0.1. Nevertheless, as 

the SNR decreases, the threshold 𝛾 should be 

increased to overcome the effects induced by the 

presence of noise. According to simulations 

performed, a threshold of 𝛾 = 1 is an appropriate 

choice and provides excellent results for relatively 

low SNR’s. 

The unique point of the proposed algorithm that 

may require a special attention is the measurement 

sampling frequency 𝑓𝑠 = 1/𝑑𝑡. If 𝑓𝑠 is too low, the 

∆𝑡′𝑠 sorted in ascending order (stairs of Fig. 2) 

appear in large number, indicating erroneously the 

presence of a chaotic motion when actually may be 

a (quasi)periodic motion. Hence, a proper selection 

of the sampling frequency is required to ensure that 

the essential dynamic of the measured signal 𝑦𝑜𝑏𝑠 is 

captured. Unsurprisingly, this was already expected 

and can be seen actually as an advantage of the 

detector. Notice that, the higher is the sampling 

frequency 𝑓𝑠, better is the detection in the sense that 

𝑅 approaches even more (or moves away) from 

zero, and this way one not need to worry about 

possible oversampling as opposed to other detection 

techniques. 

 

 

6.1  Computational Complexity Analysis 

Since one of the main objectives of the proposed 

detector is the detection in real-time of chaotic 

modes, it becomes interesting to evaluate its 

complexity in computational terms. To achieve this, 

the complexity of the algorithm is compared with 

the complexity of the 0-1 Test, formulated by [2] - a 

test, say, in the same condition, in the sense that 

chaos can be detected from a single time series. 

Following reference [57], the computational 

complexity of a given algorithm is theorized by the 

ratio: 𝐿𝑖 = 𝑇𝑖/𝑇0, where 𝑇𝑖 denotes the average 

running time of the algorithm 𝑖, and 𝑇0 the average 

running time of a Test Code composed by a set of 

simple operations: 

           

Test Code: 

𝑥 = 5.55;  (𝑑𝑜𝑢𝑏𝑙𝑒)
𝑓𝑜𝑟 𝑖 = 1: 1000000
        𝑥 = 𝑥 + 𝑥;       𝑥 = 𝑥 ∗ 𝑥;       𝑥 = 𝑥 / 2;

        𝑥 = sqrt(𝑥);   𝑥 = exp(𝑥);   𝑥 = ln (𝑥);
𝑒𝑛𝑑

 

Using this definition, the 0-1 Test (with 𝑐 ∈ [𝜋/5,
4𝜋/5], 𝑁𝑐 = 100 and 𝐾 computed by the 

correlation method, see [5] for details) and the 

algorithm presented in this paper have complexities 

respectively of 𝐿1 ≅ 3.2 and 𝐿2 ≅ 1.3 × 10−3, 

corresponding respectively to the average running 

times 𝑇1 ≅ 498 ms and 𝑇2 ≅ 0.203 ms and to an 

average running time of the Test Code on the 

computer used for this purpose of 𝑇0 ≅ 154 ms. 
The signal under analysis was a time series of length 

𝑁 = 1000 points obtained by discretization, with 

sampling frequency 𝑓𝑠 = 10 Hz (𝑑𝑡 = 0.1 s), of the 

first variable of system (4), 𝑥1, and the average 

running times 𝑇0, 𝑇1, 𝑇2 were calculated running 

each algorithm 100 times. When compared to the 0-

1 Test, the proposed detector clearly requires a low 

computational effort. This is due to the fact that 

while the 0-1 Test requires the computation of 

several integrals and multiplications to obtain a 

transformed input signal, the proposed algorithm 

requires only the computation of simple operations 

given that equation (2) can be solved as a new 

measurement is available. 

 

 

7 Concluding Remarks 

In the present paper a new algorithm for chaos 

detection in real-time, automatically, from a single 

time series and in the presence of noise, is proposed. 

The principle of detection is based on one of the 

main characteristics of chaotic systems: any 

trajectory, regardless of its initial condition, 

becomes highly unpredictable after a very short 

period of time. It occurs then that a single 

component of the trajectory - the measured signal - 

is a random-like motion that exhibits ‘infinite’ local 

maxima at different time-instants. It is then 

established a sliding observation window 

comprising such time-instants, and after a simple 

data manipulation a parameter, 𝑅, specifies between 

two types of dynamics: a regular motion 

(equilibrium state, periodic, multi-periodic); or a 

chaotic motion. The decision process is based on a 

specified threshold 𝛾: 𝑅 ≤ 𝛾 indicates a regular 

motion; and 𝑅 > 𝛾 a chaotic motion.  

Numerical simulations are performed to validate 

the effectiveness of the detector using three 

applications: a butterfly-shaped system similar to 

well-known Lorenz system; the attitude motion of a 

magnetic rigid spacecraft in an elliptical orbit; and 

the attitude motion of an electro-mechanical 

gyrostat; and in all of them it is taken into account 

White Gaussian Noise (WGN) to evaluate the 

robustness of the detector. The results show that the 
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distinction is very clear. A chaotic behaviour is 

identified when and only when the underlying 

dynamics is actually chaotic, and not when it occurs 

for example a simple change of behaviour, such as a 

variation in the oscillation frequency or a 

bifurcation. Moreover, the detection is successfully 

achieved for levels of signal degradation in the order 

of SNR = 10 dB (a ratio between the signal and 

noise of ≅ 3: 1, respectively) which is more than 

enough for most engineering applications.  

The most powerful aspects of the proposed 

detector is that it does not require the system model 

neither estimation of all the state variables, or the 

reconstruction of the phase-space, that is, 

knowledge of the full trajectory, because the 

detection is independent of the nature of the data. 

The algorithm is simply applied to a unique time 

series, and because of that there is no restriction 

about the dimension of the system. Another 

advantage is related to the length of the observation 

window. The detection is effective even for a very 

small observation window of only 50 points. In 

addition, since the detector is based on the local 

maxima, there is no need of worrying about the 

sampling frequency regardless of a fast or slow 

dynamics, as opposed to other techniques that 

require a special attention to avoid oversampling 

phenomena. Lastly, the low complexity of the 

algorithm is another great advantage which makes it 

definitely appropriate for detection in real-time. It is 

very efficient from the computational point of view, 

both in terms of programming efforts as in terms of 

actual computation time. 

As a future work, it would be interesting to carry 

out a thorough study to find out the possibility of 

establishing a relationship between the level of 

noise - assuming that it is known - and the threshold 

𝛾, in order to improve (decrease) the SNR of the 

detector. Note that the introduction of a non-linear 

filter would certainly bring benefits. However, this 

is not so straightforward and requires developing 

new real-time noise reduction techniques since the 

conventional ones are not appropriate for chaotic 

dynamics (see [58], [59] for details). With respect to 

the complexity of the detector, it would be also 

interesting to carry out a formal analysis about the 

computational complexity and compare it to other 

algorithms. Another idea, which is actually being 

prepared by the same authors, is an extension of the 

proposed concept of detection for discrete-time 

systems (maps). 
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